
Globus XIO Pipe Open Driver: Enabling GridFTP to
Leverage Standard Unix Tools

Rajkumar Kettimuthu,1 Steven Link,2 John Bresnahan,1 Michael Link,1 Ian Foster1,3

1Computation Institute

Argonne National Lab. & U.Chicago

Argonne, IL 60637

2Department of Computer Science

Northern Illinois University

DeKalb, IL 60115

3Department of Computer Science

University of Chicago

Chicago, IL 60637

ABSTRACT
Scientific research creates substantially large volumes of
data throughout the processes of discovery and analysis.
Given the necessity for data sharing and data relocation,
members of the scientific community are often faced with
a productivity loss that correlates with the time cost
incurred during the data transfer process. The GridFTP
protocol was developed to improve this situation by
addressing the performance, reliability, and security
limitations of standard FTP and other commonly used
data movement tools such as SCP. The Globus
implementation of GridFTP is widely used to rapidly and
reliably move data between geographically distributed
systems. Traditionally, GridFTP performs well for
datasets containing large files. When the data is
partitioned into many small files, however, it suffers from
lower transfer rates. Although the pipelining and
concurrency solution in GridFTP provides improved
transfer rates for datasets using lots-of-small-files, these
solutions cannot be applied in environments that have
strict firewall rules. In some cases, tarring the files in a
dataset on the fly will help; in other cases, a checksum of
the files after they are written to disk is desired. In this
paper, we present the Globus XIO Pipe Open Driver
which enables GridFTP to leverage the standard Unix
tools to perform these tasks. We demonstrate the
effectiveness of this functionality through several
experiments.

CATEGORIES
H.3.4 [Systems and Software].

GENERAL TERMS
Pipe, Checksum, Bulk Data Movement, Data Transfer,
Tar Stream

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or republish, commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, or to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
TeraGrid '11, July 18-21, 2011, Salt Lake City, Utah, USA.
Copyright 2011 ACM 978-1-4503-0888-5/11/07...$10.00

1. INTRODUCTION
Global-scale science requires the ability to share and use
an ever-increasing range and volume of data from
geographically distributed sources. Rapid increases in the
raw capacity of the science networks makes it feasible to
move large volumes of data across wide area networks. In
practice, however, rapid, efficient, and robust wide-area,
end-to-end transport is technically challenging. Globus
GridFTP [1] implements the GridFTP extensions [2] to
the File Transfer Protocol (FTP) [3], which provide
support for parallel data movement, failure detection, and
other features. Globus GridFTP is widely deployed and
used on well-connected Grid [4,5] environments such as
TeraGrid [6] because of its ability to scale to network
speeds. However, when the data is partitioned into many
small files instead of fewer large files, it suffers from
lower transfer rates. The latency between the serialized
transfer requests of each file directly lowers the
achievable throughput. Pipelining [7] allows many
transfer requests to be sent to the server before any one
completes. It hides the latency of each transfer request by
sending the requests while a data transfer is in progress.
The concurrency [8,9] solution addresses this same
throughput issue by opening up multiple transfer sessions
and transferring multiple files concurrently. However,
both pipelining and concurrency cannot be applied in
environments that have strict firewall rules. In such
scenarios, tarring the files in a dataset on the fly will help
overcome such restraints. In many cases, users want to
verify the integrity of the data by doing a checksum after
the data has been written to disk. In this paper, we present
the Globus XIO [10] Pipe Open Driver (Popen), which
enables GridFTP to leverage standard Unix tools to
perform such tasks. Specifically, we compare the
performance of on-the fly tarring and untarring of files
with that of pipelining and concurrency. Additionally, we
compare the performance of checksum via Popen with
that of the legacy checksum feature in GridFTP. The rest
of the paper is organized as follows. Section 2 provides
background on GridFTP and Globus XIO. Section 3
describes the Globus XIO Pipe Open Driver. Section 4
describes the use cases of Popen including SSH GridFTP,
on-the-fly tar, and checksum. Section 5 presents the
experimental results. Section 6 briefly discusses some
observations about our approach.

2. BACKGROUND
In this section we provide details on GridFTP and the
Globus eXtensible Input/Output (XIO) framework.

2.1 GridFTP

The GridFTP protocol is a backward-compatible
extension of the legacy RFC959 FTP protocol. It
maintains the same command/response semantics
introduced by RFC959. It also maintains the two-channel
protocol semantics. One channel is for control messaging
(the control channel), such as requesting what files to
transfer and the other is for streaming the data payload
(the data channel). Once a client successfully forms a
control channel with a server, it can begin sending
commands to the server. In order to transfer a file, the
client must first establish a data channel. This task
involves sending the server a series of commands on the
control channel describing attributes of the desired data
channel. Once these commands are successfully sent, a
client can request a file transfer. At this point a separate
data channel connection is formed using all the agreed-
upon attributes, and the requested file is sent across it.

In standard FTP, the data channel can be used to
transfer only a single file. Subsequent transfers must
repeat the data channel setup process. GridFTP modifies
this part of the protocol to allow many files to be
transferred across a single data channel. This
enhancement is known as data channel caching. GridFTP
also introduces other enhancements to improve
performance over the standard FTP mode. For example,
parallelism and striping allow data to be sent over several
independent data connections and reassembled at the
destination. These enhancements require the use of the
extended block mode (MODE E) of GridFTP. In this
mode, data channels must go from sender to receiver.
GridFTP servers are typically configured to listen on one
port for the control channel, and to use a configurable port
range for data channel connections. Firewalls have to be
configured accordingly.

Globus GridFTP is widely used to move large
volumes of data over the wide area network. The XIO-
based Globus GridFTP framework makes it easy to plug
in other transport protocols. The Data Storage Interface
[11] allows for easier integration with various storage
systems. It supports non-TCP-based [12] protocols such
as UDT [13,14] and RDMA [15]. It also provides
advanced capabilities such as multilinking [16] and
transfer resource management [17].

2.2 Globus XIO

XIO is an extensible and flexible I/O library written
for use with the Globus Toolkit. XIO is written in C
programming language and provides us with one API that

currently supports many different wire protocols. All
implementations of these protocols are encapsulated as
drivers that are modular.

GridFTP uses the XIO interface for network and disk
I/O operations. The XIO framework presents a single,
standard open/close, read/write interface to many
different protocol implementations. The protocol
implementations, called drivers, are responsible for
manipulating and transporting the user’s data. Drivers are
grouped into a stack. When an I/O operation is requested,
the XIO framework passes the operation request down the
driver stack. An XIO driver can be thought of as a
modular protocol interpreter that can be plugged into an
I/O stack without concern about the application using it.
This modular abstraction is what allowed us to achieve
our success here without disturbing the application’s
tested code base and without forcing endpoints to run new
and unfamiliar code.

NETWORK
PROTOCOL

PROTOCOL
API

APPLICATION

SPECIAL
DEVICE

PROPRIETARY
API

DISKPOSIX I/O

Figure 1. Typical application interaction with various
devices.

NETWORK
PROTOCOLDRIVER

APPLICATION

SPECIAL
DEVICEDRIVER

DISKDRIVER

GL
OB

US
 X

IO

Figure 2. Application interaction with various devices
via Globus XIO.

3. GLOBUS XIO POPEN DRIVER
Combining multiple tools to accomplish complex tasks
with ease is not a new concept. In 1964―long before the
advent of Unix, Doug McIlroy described pipes. Unix
pipes are commonly used to construct powerful Unix
command lines by combining Unix commands in one line
and pass data from one to the next. The data is processed
by each command and then passed on to the next
command. The Globus XIO Pipe Open Driver is designed

to allow GridFTP clients to use pipe to combine GridFTP
with other Unix tools even on the remote GridFTP server.

Figure 3 shows the configuration. The “Client” box
represents client logic. The “Server” box represents the
GridFTP server logic. The “Data” and “Popen” boxes
represent Globus XIO drivers. The Data driver handles
the network interactions for the GridFTP server. The
Popen driver provides piping capability by allowing the
GridFTP client to replace the “File” driver that handles
the file system interactions with the Popen driver, on the
GridFTP server’s disk I/O stack. As the data passes
through the Popen driver, it gets piped to the Unix
command that the client provides; the output of that
command gets written to the disk. When the data is being
read from the server, the data read from the disk is passed
through the Unix command before it gets written to the
network. This approach is minimally invasive to the
tested and robust GridFTP server.

The Popen driver allows users to access the standard

I/O of existing programs by opening pipes to standard
I/O. This approach provides the same functionality
expected with Unix pipes, yet the user doesn’t need to
worry about what exactly is happening with the pipes.
Essentially, the user can execute commands to programs
allowing for instance, a directory of files on a remote
server to have a checksum computed using /bin/md5sum
and the result sent to the standard input of the initiating
host.

Arguably, execution of arbitrary programs as part of a
data transfer opens a potential security risk. For this
behavior to be allowed on the server, all programs that the
user might execute using the Popen driver, as well as the
Popen driver itself must be explicitly added to the
whitelist at the time the GridFTP server is run. A server
permits execution of programs only on its Popen
whitelist. If a client requests a program to be run that is
not on the whitelist, the transfer fails. Following is the
command necessary to enable Popen and tar when
running a GridFTP server:

globus-gridftp-server
-fs-whitelist popen,file,ordering
-popen-whitelist tar:/bin/tar

Here we see the standard command for running a
GridFTP server, followed by the first whitelist command
with three arguments, popen, file and ordering indicating
the drivers allowed on the disk stack. We load the Popen
module which gives us access to the Popen driver
functionality; the file driver, this allows us to conduct
non-Popen operations (regular file system interactions);
and the ordering driver ensures that the data being sent to
the pipe is in order (often, GridFTP data streams are not
in order). Next we see the popen whitelist: a comma-

separated list of programs that the Popen driver is allowed
to execute―in our example above we see tar:/bin/tar,
effectively allowing the Popen driver to use the tar
program.

Figure 3. XIO Pipe Open Driver.

4. POPEN DRIVER USE CASES
In this section we describe several use cases of the Globus
XIO Popen driver.

4.1 SSH GridFTP

Figure 4. SSH GridFTP.

One of the key advantages of the Popen driver is that

it allows us to add SSH [18] as an alternative security
mechanism for authenticating with GridFTP. The Globus
Toolkit’s GridFTP code base has become the de facto
standard for data movement within Grid projects and is in
use in the vast majority of such projects in the U.S. and
abroad. These projects appreciate GridFTP’s integration
with the public key infrastructure (PKI)-based Grid
Security Infrastructure (GSI) [19], as well as its
implementation of the fast, efficient, and robust GridFTP
data transport protocol. Another important user
community for GridFTP comprises small application
groups and researchers who often struggle with
configuring GSI. For this user community, GridFTP’s
reliance on GSI can represent a time investment that is not
justified because of the associated need to establish,
configure, and manage an appropriate PKI. To meet the
expressed needs of these communities, we have added
SSH as an alternative security mechanism to authenticate
GridFTP clients and servers using the Popen driver. The
Popen driver allows us to route the control channel over

SSH easily. While globus-url-copy (commonly used
GridFTP client) popens the SSH client, the SSH client
authenticates with the SSH daemon running on the server
machine and remotely starts the GridFTP server as a user
process on the server machine. The standard input and
standard output (both protected by SSH) become the
control channel. This process is illustrated in Figure 4.

4.2. On-The-Fly Tar

GridFTP enhancements such as data channel caching,
parallelism, and striping require the use of the extended
block mode (MODE E) [2] of GridFTP. In this mode,
data channels must go from sender to receiver. Also,
MODE E uses a configurable port range for data channel
connections. Firewalls have to be configured accordingly.

Some environments (e.g., ―biomedical and health

care) impose specialized requirements on a computing
infrastructure [20]. In particular, participating institutions
have differing firewall requirements, ranging from no
firewall to one or more institutional firewalls.

Some sites do not allow any inbound connections to

client machines. Thus, MODE E, which enables advanced
GridFTP performance features such as pipelining,
parallelism, and striping, cannot be leveraged in transfers
on these clients for downloads, because inbound
connections are blocked by firewalls. Data has to be
downloaded by using the standard FTP mode, where a
separate TCP data connection me be formed for each file
to be sent. The result is greatly reduced performance.

Faced with large datasets composed of many very

small files, the FTP protocol becomes inefficient because
with each file a data channel needs to be opened and then
closed. This problem is exacerbated when considering the
wait time before the data channel is completely closed.
This wait time can be up to 4 minutes and usually not less
than 1 minute (the actual time depends on the operating
system). Additionally, this small-files case can be
worsened if the executing transfer reaches the maximum
number of TCP connections (by doing concurrent
transfers), in which case any additional data channel
requests for the transfer will hang. Taking into
consideration the numerous complexities of the many-
small-files problem, we used the Popen driver to tar the
files on the fly. This powerful feature allows us to archive
a directory at the source, transfer the file as a single
archive, and untar the file as it arrives at its destination
directory.

The following steps illustrate a scenario of a directory

download:
1. The client creates a control channel connection to the

server and tells the server that the requested data
must be archived prior to the transfer.

2. If the server has popen support enabled, the server
archives the data with the specified command and
sends the resulting data as a stream over a single data
channel, as generated by the archive program (e.g.,
tar).

3. The client receives the archive file over the data
channel and unpacks it as it is received (again using
tar), recreating the directory structure in the client file
system.

This approach provides several benefits. One is that,
entire transfers are completed with a single command
similar to the standard globus-url-copy command, with
some additional arguments relating to the program that we
are piping data through. Another benefit is that only a
single data channel is required―a necessary feature with
firewalls that do not allow users to have concurrent
connections.

We note, however, that users should take into account

the overall benefits of using only one data channel in a
transfer, since in some cases transfers using concurrent
connections will close in on or slightly exceed the
performance of the Popen driver.

4.3 Checksum
GridFTP protocol has a CKSM command to

checksum a file―in order to checksum a directory
containing large number of files, traversing the remote
directory and performing a checksum on files, one at a
time, with the CKSM command is time-consuming. The
Popen driver with md5sum whitelisted allows us to pipe
commands through md5sum and complete a checksum of
a file or directory on a remote host. The following steps
illustrate the process of doing integrity checks via popen
for a directory upload:
1. Upload the directory, for example by using the tar-

stream method.
2. Invoke the proper globus-url-copy command to use

Popen driver-enabled GridFTP to run md5sum to
compute checksums of all files in the uploaded
directory and to transfer the result file back to the
local machine.

3. Create a local checksum file of the local directory
4. Compare the results of the checksums of the two

datasets to verify integrity of the uploaded directory.

5. EXPERIMENTAL RESULTS
In this section we describe the experimental setup and the
various tests we conducted comparing file transfer
performance and the effect of using checksums.

Figure 5. Throughput comparison on 60 ms WAN.

Figure 6. Throughput comparison on 20 ms WAN.

Figure 7. Throughput comparison on 4 ms WAN.

Figure 8. Checksum performance comparison.

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

Th
ro
ug
hp

ut
	 in
	 M

Bi
t/
s	

#	 Files_FileSize	 	

Comparison of Data Transfer
between PSC Pople and Purdue

Steele. RTT = 20ms

base	

	 -‐pp	

	 -‐cc	

	 popen	

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	
5000	
5500	

Ti
m
e	
in
	 S
ec
on

ds
	

#Files_FileSize	

Comparison Checksumming
between PSC Pople and Purdue

Steele. RTT = 20ms

sync	 	

popen	
md5sum	

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

Th
ro
ug
hp

ut
	 in
	 M

bi
t/
s	

#Files_FileSize	

Comparison of Data Transfer
between NCSA Ember and SDSC

Trestles. RTT = 60ms

base	

	 -‐pp	

	 -‐cc	

	 popen	
0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

Th
ro
ug
hp

ut
	 in
	 M

Bi
t/
s	

#Files_FileSize	

Comparison of Data Transfers
between NCSA Lincoln and

UChicago Never-2. RTT = 4ms

base	

	 -‐cc	

	 popen	

5.1 Experimental Setup
Our testing involved six different hosts, although the

methods and transfer datasets should be considered
identical. These hosts, five of which belong to TeraGrid,
were selected based on their round trip times (RTTs)
where the goal was to test with resource pairs having
RTTs of 4 ms, 20 ms, and 60 ms. The tests were invoked
via pre-scripted commands and results redirected into
appropriate files. To avoid any potential setbacks with
system administrators and current firewall restrictions, we
conducted all tests on Globus GridFTP servers built and
installed on the user account of the individual conducting
the testing. The servers were run with the appropriate
whitelist arguments on both the source and destination
hosts of the transfer. Our chosen resources were as
follows: the Pittsburgh Supercomputing Center (PSC)
resource Pople, and the Purdue University resource Steele
with an RTT of 20 ms, the National Center for
Supercomputing Application (NCSA) resource Ember
and the San Diego Supercomputing Center (SDSC)
resource Trestles with an RTT of 60 ms, and the NCSA
resource Lincoln and the University of Chicago resource
Never-2 with an RTT of 4 ms. All datasets used for
testing were 5 GB. The number of files and file sizes were
as follows: 104,857 50 KB files; 52,428 100 KB files;
20,971 250 KB files; 10,485 500 KB files; and 5,120 1
MB files. Various “blips” in testing occurred and are
attributable to system load.

5.2 On-the-Fly Tar

Figures 5–7 compares the performance of transfers
using the tar stream functionality in GridFTP with that of
the baseline GridFTP and GridFTP with other lots-of-
small-files optimizations. The chosen transfer utilities and
their arguments were as follows: globus-url-copy with no
lots of small files optimization (base), globus-url-copy
with only (-pp), globus-url-copy with only (-cc) (in which
case a value of 10 was found to be the most acceptable
while balancing performance and efficiency), and globus-
url-copy with the necessary commands to utilize the
Popen driver to tar and untar the dataset (popen).

Our testing reveals that in most cases, as the RTT
increases, so does the difference in transfer throughput
between the Popen driver tar stream and others―with the
exception of –pp. For –pp the transfer throughput
increases as RTT increases, as expected. The –pp option
eliminates the inter-file latency on the control channel,
and thus the effect of –pp is more pronounced as the RTT
increases. However, –pp is not as efficient as the tar
option. We are not sure why performance drops for the 1
MB files in Figure 5. We suspect that it is caused by
external factors such as increase in system or network
load.

In several cases using –cc, the results begin to
approach, but generally not overcome, our popen tar

stream. We note that our –cc was executed with a value of
10 for all tests, a value that is already a relatively
resource-demanding 10 concurrent connections, and yet
we still see superior performance from the data channel in
use by our tar stream.

We ran into some issues running –pp tests between
NCSA and UChicago (Figure 7). Hence, –pp numbers are
not shown on that graph. We are still examining these
issues.

5.3 Checksum
We compared the performance of computing

checksums using md5sum via the Popen driver in the
GridFTP server with that of computing checksums using
the CKSM command in GridFTP. The CKSM command
in the Globus implementation of GridFTP uses the
OpenSSL libraries to compute checksums. These tests
were conducted on only one pair of the resources listed in
Section 5.1, namely, the PSC Pople and Purdue Steele.
However, we use the same datasets for these tests.

While a few extra steps were involved in computing
the checksums using the Popen driver (as described in
Section 4.3), significant time savings results, as shown in
Figure 8. Note that the x-axis in Figure 8 is different from
that in Figures 5–7. The file size goes from 1 MB to 50
KB. The percentage improvement in performance
increases as the file size decreases. For the dataset with
largest number of files (104,857 50KB files), the
traditional checksum method took nearly 2,500 seconds
longer (almost twice as long) to complete than it did our
md5sum method. Data integrity checking using the popen
md5sum option takes a certain amount of initial
preparation. We note that the times represented in our
results for the popen md5sum method are a combination
of the resource time taken to complete all the steps
involved.

6. SUMMARY
In this paper, we described the design of Globus XIO Pipe
Open Driver that enables an application to leverage
existing tools much in the same way as standard Unix
pipes. We showed a few use cases of this driver in the
context of GridFTP. The driver was used to provide
functionalities such as SSH-based security for GridFTP,
on-the-fly tar to improve the performance of lots-of-
small-files data sets, and faster checksum calculation for
directories containing many files using the Unix
checksum utilities. We also evaluated the performance of
some of these capabilities and showed that they can bring
significant performance improvements.

ACKNOWLEDGMENTS
This work was supported in part by the Office of
Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

REFERENCES
[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped
GridFTP Framework and Server, SC'05,” ACM Press,
2005.

[2] W. Allcock, “GridFTP: Protocol Extensions to FTP for the
Grid,” Global Grid Forum GFD-R-P.020, 2003.

[3] J. Postel and J. Reynolds, “File Transfer Protocol,” IETF,
RFC 959, 1985.

[4] I. Foster and C. Kesselman, The Grid: Blueprint for a new
Computing Infrastructure. Morgan Kaufmann Publishers
Inc., 1999.

[5] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organization,” The
International Journal of High Performance Computing
Applications, vol. 15, no. 3, pp. 200–222, Fall 2001.

[6] TeraGrid. http://www.teragrid.org.
[7] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I.

Foster, "GridFTP Pipelining," in Teragrid 2007 Conference
Madison, WI, 2007.

[8] R. Kettimuthu, A. Sim, D. Gunter, B. Allcock, P. Bremer,
J. Bresnahan, A. Cherry, L. Childers, E. Dart, I. Foster, K.
Harms, J. Hick, J. Lee, M. Link, J. Long, K. Miller, V.
Natarajan, V. Pascucci, K. Raffenetti, D. Ressman, D.
Williams, L. Wilson, L. Winkler, “Lessons Learned from
Moving Earth System Grid Data Sets over a 20 Gbps Wide-
Area Network”, 19th ACM International Symposium on
High Performance Distributed Computing (HPDC), 2010.

[9] W. Liu, B. Tieman, R. Kettimuthu, I. Foster, “A Data
Transfer Framework for Large-Scale Science
Experiments,” 3rd Intl. Wksp. on Data Intensive
Distributed Computing (DIDC 2010) in conjunction with
19th Intl. Symposium on High Performance Distributed
Computing (HPDC 2010), June 2010.

[10] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The
Globus eXtensible Input/Output System (XIO): A Protocol
Independent I/O System for the Grid,” in Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium - Workshop 4, Vol. 5, IEEE
Computer Society, Washington, DC, 2005. 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429.

[11] R. Kettimuthu, M. Link, J. Bresnahan, and W. Allcock,
“Globus Data Storage Interface (DSI) – Enabling Easy
Access to Grid Datasets,” First DIALOGUE Workshop:
Applications-Driven Issues in Data Grids, Aug. 2005.

[12] J. Postel, “RFC 793: Transmission Control Protocol,”
September 1981

[13] Y. Gu and R. L. Grossman, “UDT: UDP-based Data
Transfer for High-Speed Wide Area Networks,” Comput.
Networks 51, no. 7 (May 2007), 1777–1799.

[14] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “UDT as
an Alternative Transport Protocol for GridFTP,” 7th
International Workshop on Protocols for Future, Large-
Scale and Diverse Network Transports (PFLDNeT 2009),
Tokyo, Japan, May 2009.

[15] H. Subramoni, P. Lai, R. Kettimuthu, D.K. Panda, “High
Performance Data Transfer in Grid Environment Using
GridFTP over InfiniBand,” 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2010), May 2010.

[16] J. Bresnahan, M. Link, R. Kettimuthu, I. Foster, “GridFTP
Multilinking,” 2009 TeraGrid Conference, Arlington, VA,
June 2009.

[17] J. Bresnahan, M. Link, R. Kettimuthu, and I. Foster,
“Managed GridFTP,” 8th Workshop on High Performance
Grid and Cloud Computing, May 2011

[18] T. Ylonen and C. Lonvick, eds., “The Secure Shell (SSH)
Authentication Protocol,” IETF, RFC 4252, 2006

[19] www.globus.org/security/overview.html
[20] R. Kettimuthu, R. Schuler, D. Keator, M. Feller, D. Wei,

M. Link, J. Bresnahan, L. Liming, J. Ames, A. Chervenak,
I. Foster, C. Kesselman, “Data Management Framework for
Distributed Biomedical Research Environments,” IEEE
eScience Workshop on High-Performance Computing in
the Life Sciences, Dec 2010.

